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Abstract—Training large language models is becoming increas-
ingly complex due to the rapid expansion in their size, resulting
in significant computational costs. To address this challenge,
various model growth methodologies have been proposed to
leverage smaller pre-trained models to incrementally build larger
models and reduce computational requirements. These methods
typically involve mapping parameters from small models to large
ones using either static functions or learned mappings. Although
these approaches have demonstrated effectiveness, there is a
lack of comprehensive comparative evaluations in the literature.
Additionally, combining different methodologies could potentially
yield superior performance. This study provides a uniform
evaluation of multiple state-of-the-art model growth techniques
and their combinations, revealing that efficient combination
techniques can reduce the training cost (in TFLOPs) of individual
methods by up to 80%.

I. INTRODUCTION

Large language models (LLMs) have become increasingly
popular in the recent years and continue to move towards mass
adoption as their capabilities expand and output improves [1].
This continued improvement is powered by increasing their
trainable parameters up to billions and scaling up models [22].
Training LLMs from scratch, however, comes with a pro-
hibitively high cost. The larger the model, the longer the
training time, which comes with increased computational
expenditure and resource consumption. To broaden adoption
of LLMs and reduce their training cost, it is important to find
more efficient ways to increase their size [20], [25], [27].

A recent development in increasing transformer training ef-
ficiency is the adoption of model growth methodologies which
use smaller pre-trained models to initialize large models [2],
[13], [16], [17], [24]. The large models can be grown by
increasing the number of layers (making the model deeper)
or by increasing the dimension of the model (making the
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model wider) through a transformation on the pre-trained
model’s parameters. The large models initialized via model
growth are usually more advanced on their loss curves than
randomly initialized models. Hence, they require less training
to achieve similar performance, resulting in reduced computa-
tional costs. There has been extensive work that has introduced
or examined various model growth techniques on transformer
architecture [5], [21]. The model growth methodologies can
be classified into static and learning-based initialization frame-
works [14], [21]. The static methods perform a fixed operation
on the pre-trained models parameters, such as duplicating each
layer by stacking or interleaving model layers to increase the
model depth, whereas the learning-based methods train a meta
model that optimizes the initialization of the large model. The
training cost of the meta model is usually very low compared
to the that of the large model. These methodologies have
showed very promising results in transformer model growth,
and can be employed to lower compute cost. As a result, large
transformers can become accessible in many environments
where computational resources can be limited.

However, there is lack of a comprehensive evaluation of ex-
isting model growth methodologies with uniform benchmarks,
hindering their selection and improvement. In this paper, we
compare existing model growth methods and their combina-
tions with the same set of datasets and pre-trained models, and
discover more effective model growth methods based on their
combinations. Our contribution can be summarized as follows:

« We provide a uniform comparison of existing static
and learning-based model growth methods in different
experimental settings for multiple use cases.

« We test various combinations of existing model growth
methods with extensive experiments and identify the best
combination approach, which can reduce training cost by
up to 80%.

« We explore model growth methodologies beyond a single
pre-trained models towards multiple small models that
were pre-trained on disjoint datasets. As far as we know,
this is the first work to leverage multiple pre-trained
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Fig. 1: Stacking: Static depth expansion method

small models to initialize LLMs for efficient training.
We compare the model growth methods, typically used
for growing models from a single pre-trained model and
adapt them for multiple pre-trained models, based on a
uniform criteria and benchmarks.

II. MODEL GROWTH TECHNIQUES

Attempts in model growth of neural networks can be traced
back to the 1990s [6]. There are two popular techniques to
enlarge the scale of a deep learning model: making a model
deeper (depth expansion) and making a model wider, i.e., in-
creasing the dimension of the model (width expansion). These
techniques have evolved over time, with recent advancements
focusing on maintaining model efficiency while increasing
size, particularly in the context of large language models.

While model growth for neural networks has been discussed
for decades, only recently have these techniques been ap-
plied to deep learning architectures. Chen et al. proposed a
form of layer stacking for convolutional neural networks [3].
Gong et al. all observed that the attention patterns of many
layer higher layers in trained BERT models were similar to the
lower layers [7]. Also, they suggested that there might be some
redundancy in the model’s architecture, and particularly that
knowledge from shallow layers could be transferred to deeper
layers. Recently, many new and updated techniques for model
growth have been presented to reduce computational costs.
However, some contemporary research has posited that while
model growth works well initially, it either is even or worse
than training from scratch when large amounts of training
data [8] are given.

A. Depth-based Static Methods

To make a model deeper, multiple existing methods stack
the model blocks in different orders. The basic unit of opera-
tion is the transformer blocks.

Stacking [5]: A transformer model has several blocks
corresponding to encoder and decoder layers. The stacking
approach is a straightforward way of increasing the depth of
a model by duplicating model layers and concatenating them
to the small model as shown in Fig. 1. This is a very popular
methodology for depth expansion used by [5], where it is
referred to as G-Stack. Du et al. found that G-Stack, performed
the best out of various model growth techniques that were
evaluated, and demonstrated that G-Stack continue to have
benefits even with an abundance of training data. Stacking
has also been used for efficiently training BERT-based models
by [7], where it is referred to as StackBERT.

Interleaving [5]: This method is similar to stacking, except
instead of concatenating the duplicated layer after the model,
they are interwoven into the structure as shown in Figure
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Fig. 2. Intuitively, this approach seeks to mimic the effect
of increasing the resolution of an image by increasing pixel
density.

Identity Injection [5]: This approach refers to growing a
model deeper by adding identity layers, which output their
input, in an interleaved or stacked manner. This preserves the
loss function of the smaller model and is able to initialize the
large model’s training at the intersection of its loss curve with
the small model’s loss curve.

B. Width-based Static Methods

Different from deeper expansion, the wider expansion
changes the shape of the basic block, and extends all param-
eters matrix and structures to a larger size compared to the
small model in one block.

G-Zero [5]: Width expansion technique increases the di-
mension of the transformer model. The key idea is to copy
the parameters of the small model and fill the remaining space
with zeros. Consider a 2k x 2k block matrix in the larger
model, where & is the block matrix size in the small model,
there are two ways to implement this method: i) The block
at the top left corner contains the copy of the small model
parameters and the rest of the blocks are 0. ii) The matrix is
initialized as block diagonal, where the diagonal blocks are
copies of small model parameters. Fig. 3 visualizes the two
ways of using G-Zero. In this work, we will refer to method
(a) as G-Zero and method (b) as G-Zero v2.

G-Random [5]: Similar to G-Zero, G-Random expands the
width of the model by copying the small model parameters.
However, instead of filling the remaining space with zeros, G-
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Fig. 5: LiGO: Learning-based depth and width expansion

Random fills it randomly. There are two ways to implement
G-Random: i) Block (0,0) contains the copy of small model
parameters, the rest are random. ii) Diagonal blocks contain
copies of small model parameters, the rest are random. Fig. 4
shows the two ways of using G-Random. We will refer to
method (a) as G-Random and method (b) as G-Random v2.
C. Learning-Based Methods

Dynamic model growth methodologies have employed an
optimization-based approach to learn trainable parameters that
act as transformation operators to map small model parameters
to the large model’s parameter space. The approach seeks to
combine the width and depth expansion instead of performing
them separately.

LiGO [21]: Wang et al. use depth expanders (i.e., linear
combinations of all the model layers) to map [; layers in
a small model to l» layers in a large model and use width
expanders to map d; X d; parameters in a small model to
ds X dg parameters in a large model as shown in Fig. 5. LiGO
uses matrix factorization to perform depth and width expansion
with Ly, xi, and Ry, 42, 42 matrices, respectively. The matrix
R is further factorized as a Kronecker product of A4,xq4, and
Bg, x4, to reduce the number of trainable parameters.

MANGO [14]: Pan et al. transform their optimization
parameters into a multi-linear operator via a tensor ring matrix
product decomposition. This yields four smaller matrices
that map the small model parameters onto the large model
parameter space.

D. Multi-Model Methods

In machine learning, the practice of leveraging multiple
models has a long history and has consistently enhanced model
performance. Ensemble learning techniques, such as bagging,
boosting, and stacking, utilize the strengths of individual
models by combining their predictions [4]. These methods are
well-documented for their effectiveness in reducing overfitting
and improving predictive accuracy by averaging out the errors
of individual models.

While widely used large language models (LLMs) are ver-
satile and generalized, numerous smaller pre-trained models
are specifically designed for narrower tasks. For example,
customer service bots on retail websites are often trained
on particular product catalogs, frequently asked questions,
and company policies. This specialization enables them to
deliver accurate and contextually relevant responses within
their domain, without relying on the extensive knowledge base
of a general-purpose LLM.

As LLMs become increasingly sophisticated, the demands
for specialized models continue to rise. Companies will need

to enhance the capabilities of these specialized models, push-
ing them toward greater generalization. This is often achieved
by expanding the size of the model and its associated dataset.
In this context, model growth can be leveraged to incorporate
pre-existing models with distinct datasets. By applying the
ensemble approach to Transformers, we can utilize the in-
sights gained from each model to minimize the computational
resources required for scaling up.

This approach introduces new challenges, as the growth
of multiple models necessitates careful consideration of how
to harmonize their loss curves. With a single model, there
is only one loss curve—the initial smaller model—making it
straightforward to identify the optimal point for expansion.
In contrast, managing multiple models adds complexity, as
the ideal expansion point for one model may negatively
impact another. This results in a multidimensional optimization
problem, requiring us to navigate the trade-offs between the
performance of different models and identify a compromise
that maximizes overall results.

III. DATASETS

We used three textual datasets to train and evaluate our lan-
guage models: a collection of Shakespeare’s works, WikiText-
2, and WikiText-103.

The tiny Shakespeare dataset comprises 40,000 lines from
the works of William Shakespeare [9]. Using this dataset
allows our models to capture the nuances of Early Modern
English, understand complex literary devices, and handle di-
verse text structures. Given the small nature of this dataset,
we decided to use character-based tokenization for simplicity.

The WikiText-2 dataset is a modern English corpus ex-
tracted from Wikipedia articles [12]. It consists of nearly 3
million tokens and retains the original text structure, includ-
ing punctuation and capitalization. WikiText-2 is curated to
contain long, coherent pieces of text, providing a context-
rich environment for language modeling tasks. This dataset is
well-suited for evaluating a model’s ability to process modern,
well-structured prose and its capacity to generalize across the
diverse topics and domains present in Wikipedia.

The WikiText-103 dataset is an extended version of
WikiText-2, containing over 118 million tokens [12]. Like
WikiText-2, it is derived from Wikipedia articles, but offers
a significantly larger and more diverse corpus. This dataset
includes a wide range of topics, making it ideal for train-
ing large-scale language models. The size and diversity of
WikiText-103 allow for a thorough evaluation of a model’s
scalability and performance in understanding and generating
extensive textual content. For both WikiText-2 and WikiText-
103, we opted to use GPT2Tokenizer, a pretrained tokenizer
from HuggingFace.

TABLE I: Summary of the datasets

Dataset Learning rate Tokenizer # Tokens
Shakespeare 0.001 Character-based 1115393
WikiText-2 0.0003 GPT2Tokenizer 2922460

WikiText-103 0.0003 GPT2Tokenizer | 118450716

Table I summarizes the hyperparameter settings for training

initialized large models on each dataset.
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IV. BENCHMARK MODELS

We benchmarked some of the model growth methodolo-
gies (in §II) in a uniform setting to fairly compare their
performance on diverse use cases. In addition, we tested
various models generated by combining those methodologies
to evaluate the best possible permutations of width and depth
expansion in conjunction with static and learning-based ex-
pansion.

A. Combination Methods for Model Growth

We combine the model growth techniques with the follow-
ing methods to make models deeper, wider, or both.

StackLiGO is the model combined from the LiGO method
with the Double stack. As shown in Fig. 6, the first section
of the model is copied from the small model, and the second
part of the model uses the LiGO combined block instead of
the small model.

For CrossLiGO, shown in Fig. 7, we use techniques similar
to interleaving. We stack the blocks one by one instead of the
entire small model.

The G-Zero + Stacking is the double-stacking version
of the wide model. By using the wide extension method,
we obtained the wide block of the wide model. Then, we
stack these blocks by following the Stacking strategy shown
in Fig. 1.

Similar to G-Zero + Stacking, G-Zero + Interleaving is
the wide model version of Interleaving. Using the wide blocks
constructed by the G-zero method, we stack the wide blocks
as the Interleaving shown in Fig. 2.

B. Growth from a Single Model

We use a decoder-only transformer architecture for our
benchmarks. We summarize the model architectures in our
use cases below.

1) Small Pre-Trained Model: Table II summarizes the
model configurations for the small pre-trained model.

TABLE II: Pre-trained model configuration

TABLE III: Depth expansion model configuration

Dataset #Layers | Model dimension
Shakespeare 8 32
WikiText-2 8 128
WikiText-103 8 128

3) Deeper and Wider Large Model: Table IV summarizes
the model configurations for large model expanded by depth
and width.

TABLE IV: Depth and width expansion model configuration

Dataset #Layers | Model dimension
Shakespeare 8 64
WikiText-2 8 256
WikiText-103 8 256

C. Combination of Multiple Models

1) Small Pre-Trained Models: Table V summarizes the
model configurations for the small pre-trained models used
for model growth.

TABLE V: Pre-trained models configuration

Dataset #Layers | Model dimension
WikiText-2 4 128
WikiText-103 4 128

2) Deeper Large Model: Table VI summarizes the config-

urations for the depth-expanded large model.

TABLE VI: Depth expansion multi-model configuration

Dataset #Layers | #Models | Model dimension
WikiText-2 8 2 128
WikiText-103 8 2 128
WikiText-103 12 3 128
WikiText-103 16 4 128

Dataset #Layers | Model dimension
Shakespeare 4 32
WikiText-2 4 128
WikiText-103 4 128

2) Deeper Large Model: Table III summarizes the config-
urations for the depth-expanded large model.

V. EVALUATION
A. Experimental Setting

1) Single Pre-trained Model: We used a single small pre-
trained model as the base to grow larger models using various
techniques discussed above and compare them based on their
computational efficiency and prediction loss. We evaluate two
use cases: i) a larger model expanded by depth and width
and ii) a larger model expanded by just depth. We omit the
width-based expansion case since we empirically observed that
width expansion does not save us much compute, similar to
the observations in [5]. The learning-based growth methods
are trained for 10 epochs to optimize initialization of large
models. We use the same hyperparameters for each initialized
large model being trained on a dataset given in Table I.

2) Multiple Pre-trained Models: We modify the techniques
discussed above to initialize a large model based on the
parameters of multiple small models. Like our experiments
based on a single pre-trained model, we exclude width-based
expansion due to its limited computational efficiency gains.
For learning-based methods, the modifications are straightfor-
ward and intuitive: we use the parameters of all the pre-trained
models as input for the learned initializer. For static methods,
we incorporate randomization and normalization to select the
parameters in the following two ways:

Stacking: We randomly choose the order in which the
models are stacked, and used three different ways to select
the embedding and the final dense layer (shown in Fig. 8): 1)
The “average” method uses the mean of the embedding and
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final dense layer parameters for each model to initialize the
large model (in Fig. 8b). ii) The “attached” method uses the
embedding from the model stacked first and the final linear
layer from the model stacked last (in Fig. 8c). iii) The “Same”
method uses the embedding and the final linear layers from
the same model chosen randomly in the stack (in Fig. 8d).

Interleaving: We choose a random order in which the model
layers are interleaved. The order remains consistent for all the
layers. The embedding and final dense layer are initialized in
the same manner as the Stacked model.

B. Growth from a Single Model

We evaluated model growth from a single pre-trained
model by measuring the computational cost of training the
grown models and the scratch model. Then, we plotted the
validation loss of the model against the training cost (in
TFLOPS) in Figs. 9, 10, and 11. We observe that combination
of techniques can outperform the original methodologies in
some use cases. StackLiGOv2 saves the most computational
cost in Wiki-2 depth+width expansion, closely followed by
CrossLiGO and CrossLiGOv2 as shown in Fig. 9a. However,
for the depth-only expansion, we see in Fig. 9b that LiGO
is most effective, although it’s performance is very similar to
CrossLiGO and StackLiGO. This can be due to the fact that
in learning-based depth expansion, the number of trainable
parameters is small for the initial optimization. Hence, LiGO
can achieve greater optimization due to having more trainable
parameters compared to StackLiGO and CrossLiGO, which
have half of their layers set to static. Fig. 10 illustrates that for
the largest dataset, Wiki-103, in our benchmark, CrossLiGO
demonstrates the most efficient model growth in both depth
and width expansions and LiGO continues to excel as the best
initializer in depth-only expansions, consistent with the find-
ings from the Wiki-2 evaluation. Fig. 11 shows that learning-
based methods underperform on the Shakespeare dataset in
both depth-plus-width and depth-only expansion scenarios. In
the depth-plus-width expansion, the scratch model emerges as
the top performer. However, for depth-only expansion, stack-
ing and interleaving methods incur the lowest computational
cost. Therefore, we can conclude that depth expansion is the
most effective way to grow a model for smaller datasets and
width expansion can be introduced as the dataset size becomes
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sufficiently large. Furthermore, we notice that static methods
are optimal for expanding models trained on smaller datasets,
while learning-based methodologies begin to dominate as data
complexity increases.



C. Combination of Multiple Models
We found that all techniques can improve training from

scratch. The techniques of Stacking and Interleaving both
yielded advantages, yet the main difference in the results
seems to relate to how closely the embedding and final linear
layers fit onto the stacked models. The “attached” method
which set the embedding layer to the first model and the final
linear layer to the last model was conceptually appealing but
yielded the worst results. In fact, this was nearly identical
to the scratch approach. Averaging the combination of the
parameters from each layer was an improvement, but the best
performance came from the “same” method which simply
duplicating both the embedding and final linear layer from
any one model.

From Fig. 12, we can see that constructing the embedding
and final linear layers with the “average” method tends to con-
verge faster alongside the “same” method. However, Fig. 13
shows that when increasing the number of different small
models, the performance of the “average” method in relation
to the multi-model “same” method (in Fig. 8d) becomes worse.
The results indicate that the more pre-trained small models are
used, the less the averages of layers aligned with the blocks.

By reusing the boundary layers (i.e., embedding and final
linear layers) from any one model, the “same” method pro-
duces the best results of any multi-model method. This in-
dicates that harmonizing boundary layers provides significant
initial benefits, resulting in lower loss. Even though multiple
smaller models are incorporated into the intermediate layers,
matching boundary layers from a single model outperforms
averaging or attaching them from different models. This
performance is likely to stem from the inherent alignment
between boundary layers when they come from the same
model.

Note that, as a learning-based method, LiGO performed
very inconsistently. Fig. 12 displays two performance of the
two LiGO initialized models: one is good, but the other is poor.
If LiGO is able to get a good initialization, it outperforms all
the static methods by a substantive margin, whereas if the
initialization is poor, the large model is very computation-
expensive. Therefore, due to its performance inconsistency,
we consider the methodology unreliable for initializing a large
model from multiple pre-trained models.

Our results indicate that each smaller model contains a
specific knowledge base extracted from its subset of the data.
Utilizing these small models to train a more sophisticated
large model with model growth techniques can consume
lower computation costs. However, it is important to choose
the correct combination method for integrating these smaller
models into a larger one. The “same” method, which reuses
both embedding and final liner layers from a single model,
appears to provide the best starting point for further training,
likely due to the inherent alignment between these layers.

VI. DISCUSSION

We omit the evaluation of combination techniques that
utilize G-Random, because we empirically observed that the
initialized models were often getting stuck in a local minima

during training. The same thing happened to LiGO-based
model in the case of multiple pre-trained models. For two
pre-trained models, the initializations were inconsistent, so
the model might perform extremely well, moderately, or very
poor. With the number of pre-trained models increasing, LiGO
degrades performance. Specifically, the large model initialized
by LiGO would perform poorly or get stuck in a local minima
more possibly. This might be because finding the optimal jump
point (from small model parameter to large model parameter)
across multiple loss curves is far more complex than for a
single loss curve when there is only one pre-trained model.

While we discovered various conclusive results by bench-
marking several model growth methodologies and their combi-
nations, our work was limited to a decoder-based transformer
model. We leave incorporating an encoder-based cross atten-
tion architecture to future work. Further improvements can be
made to model growth evaluation by including model tuning
and its associated costs. Lastly, while our evaluation utilized
multiple static methods, we categorized learning-based tech-
niques under one umbrella and only benchmarked the LiGO
framework under that category to limit the combinatorial space
of method exploration. An evaluation involving other learning-
based initialization frameworks such as [14] can provide a
more comprehensive comparison of model growth operators.
Also, we will validate this technique in training broader deep
learning applications [10], [11], [15], [18], [19], [23], [26].

For our evaluation of model growth from multiple pre-
trained models, we had to generate the pre-trained models
by partitioning each dataset and training small models on the
disjoint training data. However, this approach suffers from the
data uniformity issue, which causes the pre-trained models
learning from completely disjoint datasets to have common
knowledge, rather than become separate specialists. This can
be improved by using different datasets under a common
domain to generate pre-trained models and growing a large
model from those models that learns from the union of the
pre-trained models’ datasets.

VII. CONCLUSION

In this work, we compared several existing model growth
methodologies to generate a large model from a single pre-
trained model and from multiple pre-trained models. We
also evaluated combinations of existing methodologies for
a comprehensive review regarding how these methods can
interact with one another. We discovered that learning-based
methodologies are more powerful than static ones to save
compute in the case of a single pre-trained small model.
However, the learning-based methods performed poorly when
the number of pre-trained models increases. Also, we found
that methodologies that use randomization to initialize the
large model’s parameters were less efficient, because the initial
loss might be close to a local minima so that the model would
either get stuck or the descent would be very slow. In addition,
static methods that do not employ random parameters for the
large model initialization have more consistent performance.
Finally, we conclude that model growth methodologies are an
effective tool to enhance Transformer training efficiency.
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ARTIFACT DESCRIPTION/EVALUATION APPENDIX

A. Summary of the Experiments Reported

1) Abstract: We provide this artifact description to make
our results more reproducible. We measure two main results:
i) The model loss through training, ii) The compute cost of
training in FLOPS.

2) Artifacts: source code GitHub Link

git clone https://github.com/SHUs-Lab/AI4S24DP.git

B. Experimental Setup

1) Relevant Hardware Details:

« GPU: NVIDIA A40
« GPU Memory: 48 GB

2) Operating Systems and Versions:

o Operating System: Rocky Linux
o Version: 9.4 (Blue Onyx)

3) Compilers and Versions:
o Compiler: Python 3.12
4) Libraries and Versions:

« Pytorch: 2.3.0+cul2l
o Pandas: 2.2.2

e Transformers: 4.41.0
o Calflops: 0.3.2

« Datasets: 2.20.0

5) Input Datasets and Versions:

o Shakespeare: Downloaded from
https://raw.githubusercontent.com/karpathy/charrnn/master/
data/tinyshakespeare/input.txt

o Wikitext-2: Downloaded from huggingface
https://huggingface.co/datasets/Salesforce/wikitext

« Wikitext-103: Downloaded from huggingface
https://huggingface.co/datasets/Salesforce/wikitext

6) Other Installation Software: CUDA 12.1

C. Evaluation Experiments

For all experiments, install necessary python packages listed
in Appendix B4 ‘Libraries’ using ‘pip’.

1) Single Pre-trained Model: The following shows how
to get the benchmarks for static and dynamic model growth
techniques.

Dynamic growth

a) To benchmark the Shakespeare dataset, use the
file ‘LiGO_Shakespeare.ipynb’ in the directory ‘Dynamic-
ModelGrowth’.

b) To benchmark the Wiki-2 and Wiki-103 datasets,
use the file ‘LiGO_Wiki.ipynb’ in the directory ‘Dynamic-
ModelGrowth’. To choose the dataset, modify block 3 by
toggle commenting lines 2 and 5.

Static Growth

a) To benchmark the Shakespeare dataset, run the
file ‘WideAndDeep_Shakespeare.ipynb’ in directory ‘Static-
ModelGrowth’.

b) To benchmark the Wiki-2 and Wiki-103 datasets,
run the file “WideAndDeep_Wiki.ipynb’ in directory ‘Static-
ModelGrowth’. To choose the dataset, modify block 3 by
toggle commenting lines 2 and 5.

2) Multiple Pre-trained Models: Do the following steps for
model growth evaluation from multiple pre-trained models.

a) Files are located in ‘Multi-Model’ folder.

b) Choose dataset using the corresponding load_dataset()
function call in both ‘LiGO-MultiModel.ipynb’ and ‘Stacked-
MultiModel.ipynb’.

¢) Run the scripts ‘LiGO-MultiModel.ipynb’ and ‘Stacked-
MultiModel.ipynb’ to generate performance results.

3) Calculating FLOPS: Run the following code at the end
of any of the scripts to calculate the FLOPs associated with a
particular model dimension.

sample = None

for 1 in train_dataloader:
sample = i[ ’input_ids’]
break

calculate_flops (model=Model (model_dim)
.to(device), kwargs={’inp’ :sample})



