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Abstract—Neural-network-enabled data analysis in real-time
scientific applications imposes stringent requirements on infer-
ence latency. Meanwhile, recent deep learning (DL) model design
trends to replace a single branch with multiple branches for
high prediction accuracy and robustness, which makes inter-
operator parallelization become an effective approach to improve
inference latency. However, existing inter-operator parallelization
techniques for inference acceleration are mainly focused on
utilization optimization in a single GPU. With the data size of
an input sample and the scale of a DL model ever-growing,
the limited resource of a single GPU is insufficient to support
the parallel execution of large operators. In order to break
this limitation, we study hybrid inter-operator parallelism both
among multiple GPUs and in each GPU. In this paper, we
design and implement a hierarchical inter-operator scheduler
(HIOS) to automatically distribute large operators onto different
GPUs and group small operators in the same GPU for parallel
execution. Particularly, we propose a novel scheduling algo-
rithm, named HIOS-LP, which consists of inter-GPU operator
parallelization through iterative longest-path (LP) mapping and
intra-GPU operator parallelization based on a sliding window.
In addition to extensive simulation results, experiments with
modern convolutional neural network benchmarks demonstrate
that our HIOS-LP outperforms the state-of-the-art inter-operator
scheduling algorithm IOS by up to 17% in real systems.

Index Terms—inter-operator parallelism, deep learning infer-
ence, multi-GPU environment

I. INTRODUCTION

While real-time deep learning (DL) applications powered by
robust multi-branch neural architectures have become a driving
force for in-situ data analysis in vital scientific domains, many
scientific applications advance explicit demands on inference
latency. For example, in energy fusion, the fast-evolving
dynamics of the plasma control systems, which manage the
reactor diagnostics, impose stringent latency limitations on DL
inference in the millisecond scale [1], [2].

In order to improve inference latency, some research efforts
have been devoted. On one hand, inter-operator parallelism
has been explored within a single GPU to optimize hardware
utilization [3], [4]. However, existing inter-operator scheduling
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techniques are only fit for small operators, because the parallel
execution of large operators in a single GPU causes unneces-
sary hardware resource contention. On the other hand, the CPU
is also utilized to accelerate a DL inference by collaborating
with GPU [5], [6]. Unfortunately, such a technique leads
to prediction accuracy loss, because data compression and
approximate computing have to be incorporated to avoid
high data transfer overhead via the low-bandwidth PCIe bus
between the CPU and the GPU.

Recently, real-time big-data processing faces the demands
of huge volume and high velocity. In a convolutional neural
network (CNN) inference, high-resolution input images usu-
ally make both the computation task of each operator and
intermediate data between operators extremely large. As a
result, a single GPU does not have enough computational
power to support such inter-operator parallelism.

At present, various servers and edge computers can be
equipped with multiple homogeneous GPUs connected via
high-speed NVLink to enhance total computational power.
For instance, Dell Precision 5820 Tower Workstation and Dell
PowerEdge R750XA Rack Server can support two and four
powerful GPUs, respectively. Also, supercomputers and clus-
ters have high-speed network interconnect among GPU com-
pute nodes. Unfortunately, although these platforms provide
new opportunities for inter-operator parallelism on multiple
GPUs, this problem is still largely underexplored. To meet
ever-growing demands on the low latency of DL inference with
large operators by fully utilizing the richer computing resource
of multiple GPUs, this paper studies inter-operator scheduling
for a DL inference on multiple GPUs by integrating inter-GPU
and intra-GPU operator parallelization.

Inter-operator parallelism among multiple GPUs and within
each GPU provides more computational resources and a richer
scheduling space to reduce inference latency indeed, but
the inter-operator scheduling problem on multiple GPUs is
much more challenging to be solved. 1) Spatially, mapping
operators onto GPUs does not only entail allocating indepen-
dent operators onto different GPUs to improve the degree of
parallelism, but also involves assigning dependent operators
onto the same GPU to minimize data transfer time because
communication time between GPUs compared to operator



latency is not negligible. 2) Temporally, assigning operators
in stages should not only avoid hardware under-utilization and
resource contention among operators in a single GPU, but
also needs to account for explicit and implicit dependencies
between operators on different GPUs. 3) The interaction
between spatial and temporal optimization makes the joint
two-dimensional optimization problem very intractable.

To address these challenges, we propose a Hierarchical
Inter-Operator Scheduler based on the Longest-Path (HIOS-
LP). Due to the extremely high computational complexity
of the hybrid inter-GPU and intra-GPU operator scheduling
problem, we decouple this two-dimensional problem into two
loosely coupled one-dimensional subproblems as follows: i)
The spatial operator-to-GPU mapping subproblem is onto
which GPU each operator should be mapped, and ii) the
temporal operator-to-stage allocation subproblem is at what
time each operator should start in their respective GPUs.
For the spatial operator-to-GPU mapping, we partition the
computational graph of a DL model into groups of dependent
operators with the least dependencies between groups to in-
crease the degree of parallelism across GPUs. Then, we assign
all the operators in each group onto the same GPU to minimize
data transfer overheads. Specifically, we iteratively choose the
longest path, whose middle operators have no dependencies
with selected operators, from unselected operators in the com-
putational graph and greedily map the entire path onto the most
suitable GPU. For the temporal operator-to-stage allocation,
we dynamically adjust the degree of parallelism in stages
within each GPU using a sliding window to avoid under-
utilization and resource contention. Also, we adopt topological
sorting in the original computational graph and loop detection
in the scheduled computational graph, which includes groups
of concurrent operators (i.e. stages), to address explicit and
implicit operator dependencies, respectively.

In this paper, our contributions are summarized as follows:
• We point out a substantial inference latency issue for

real-time DL applications: when a large operator can
saturate hardware’s high parallelism, inter-operator par-
allelism within a single GPU would degrade inference
efficiency. Therefore, inter-operator parallelism across
multiple GPUs is crucial to accelerate the inference of
multi-branch DL models. As far as we know, this paper
is the first work on hybrid inter-GPU and intra-GPU
inter-operator parallelization to improve the latency
of a single inference.

• We design and implement a hierarchical inter-operator
scheduler (HIOS)1 based on CUDA-aware MPI and
cuDNN, incorporating a novel HIOS-LP algorithm that
we designed. The proposed HIOS-LP can identify a near-
optimal schedule for hybrid inter-GPU and intra-GPU
inter-operator parallelization. This technique can serve
as a platform-agnostic general technique to speed up
the inference latency for popular frameworks such as
PyTorch [7] and TensorFlow [8] due to its orthogonality.

1The source code is available at https://github.com/SHUs-Lab/HIOS

• We apply HIOS-LP to two real-life CNN models with
varying input image sizes and generate customized oper-
ator schedules. As a result, the extensive experimental re-
sults verify the superiority of HIOS-LP over the state-of-
the-art inter-operator scheduler IOS by up to 16.5% and
over HIOS-MR (our other algorithm for inter-operator
scheduling on multiple GPUs) by up to 16.8%.

II. BACKGROUND AND MOTIVATION

High-resolution data often need to be processed by DL
models in real-time applications, such as biomedical analysis
and remote sensing [9]–[11]. Using high-resolution images as
direct inputs for DL models poses a challenge in inference
latency, because the operator size (i.e., the computational
workload of an operator) is rocketing while the data size
of an input sample is rapidly growing. However, simply
resizing the images to a lower resolution significantly decrease
prediction accuracy. For example, in irrigation type mapping
research [12], very-high-resolution satellite imagery needs to
be analyzed through CNN inference, and an original image
has the resolution of 5000 × 5000 pixels. For acceptable
inference efficiency, geospatial scientists have to downsize the
original image to 500× 500 pixels or below in preprocessing.
Unfortunately, such approximation suppresses fine details and
loses a lot of valuable information. Therefore, it is crucial to
accelerate the inference of a DL model composed of large
operators.

A common practice to improve DL inference efficiency is
parallelization [4]. Intra-operator parallelism can split a large
operator into smaller ones through data partitioning, but often
involves additional computational overhead, further degrading
the inference efficiency and overall system throughput. Thus,
such a technique is only used when the memory size of a
single GPU is insufficient to support the execution of an entire
operator. Without the limit from memory size, inter-operator
parallelism is usually put into practice to improve inference
efficiency [3], [4], [13].

A. Resource Contention v.s. Under-Utilization

A DL model consists of various operators with different
compute workloads, varying with the input data size. A small
operator running alone on a GPU can only occupy a portion
of streaming multiprocessors (SMs), leading to resource un-
derutilization. Therefore, multiple small operators executing
in parallel on one GPU can increase resource utilization
and improve inference efficiency. However, a large operator
running alone on a GPU may fully utilize all the SMs and
exhaust the majority of registers and shared memory in each
SM. In this case, two or more large operators executing in
parallel on one GPU causes serious resource contention and
context switch overheads. To validate this, we conduct the
following experiment and take an example of a convolution
operator with the kernel size of (5, 5) and the stride of (1, 1),
whose input consists of 48 image channels with exponentially
increasing size from 8×8 to 1024×1024. For each input image
size, we measure the execution time of two such convolution
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Fig. 1: Latency ratio between
parallel and sequential execu-
tion of two identical convolu-
tional operators with varying
input image sizes
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Fig. 2: Ratio of the trans-
fer time of input data to the
computation time of a convo-
lutional operator for different
input image sizes

operators running separately in sequential and parallel on a
single Nvidia Ampere A40 GPU. The ratios between their
sequential execution times and parallel execution times are
plotted in Fig. 1, which shows that the parallel execution time
is shorter than the sequential execution time for input image
sizes of no more than 64 × 64 (i.e., low workloads), but is
longer for input image sizes of 128 × 128 and beyond (i.e.,
high workloads). Therefore, inter-GPU operator parallelization
becomes critical for the inference acceleration of DL models
with large operators.

B. Computational Workload v.s. Communication Overhead

Multi-GPU platforms, such as a multi-GPU server/work-
station and a GPU cluster, break through the capacity limit
of a single GPU and provide more computing resources to
support inter-operator parallelism among multiple GPUs. Also,
NVLink and NVSwitch techniques [14] sharply reduce the
data communication time between GPUs and decrease the
overheads of inter-GPU operator parallelization in comparison
to the traditional PCIe bus. For example, we measure the
execution time of the convolution operator aforementioned
in §II-A and the data transfer time of its input image be-
tween two homogeneous GPUs over varying input image
sizes on three dual-GPU platforms with different GPUs and
interconnections between GPUs. Then, we plot the ratio of
the communication time to the computation time in Fig. 2,
which shows that communication overheads are not negligible.
However, dual Nvidia Ampere A40 or RTX A5500 GPUs
connected via an NVLink bridge have a lower time ratio of
data communication to operator computation than two Nvidia
Tesla V100S GPUs connected via a PCIe Gen3 interface and
thus are a more suitable platform to support inter-GPU inter-
operator parallelization. When the communication overhead
is much higher than the tiny computation tasks of operators,
parallel execution of operators within a single GPU is more
efficient than simultaneously running operators over multiple
GPUs. In contrast, when the communication overhead is
relatively low in comparison to the computation task of an
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Fig. 3: A schedule for a computation graph on multiple GPUs

operator, the communication latency can often be hidden by
parallelizing operator computation and data communication.
Because the workloads of various operators are very different
in a DL model, hybrid inter-operator parallelism both between
GPUs and within each GPU can flexibly exploit the resource
of multi-GPU platforms to minimize inference latency for real-
time DL applications.

III. PROBLEM FORMULATION

In this section, we formulate an inter-operator scheduling
problem to minimize DL inference latency on multiple GPUs.

A. Cost Models

Computation Graph. The structure of a DL model, such
as a CNN, can be defined by a directed acyclic graph (DAG)
G = (V,E), where each vertex v ∈ V represents an operator,
such as convolution, pooling, and linear operators, and each
edge e = (u, v) ∈ E indicates an operator dependency, i.e., a
tensor that is the output of operator u and the input of operator
v. Each vertex v has a weight for the execution time t(v) of
this operator running alone on a GPU, and each edge e also
has a weight for the data transfer time t(e) = t(u, v) between
operators u and v on two different GPUs.

Graph Partition. A workstation or server is equipped with
M homogeneous GPUs, directly connected through high-
speed NVLink/NVSwitch (where M is an even number in
practice). The computation graph is partitioned into m (≤ M )
computation subgraphs. An MPI program instance has m
processes, one of which launches all the operators in one
subgraph to execute on the same GPU. In contrast, operators
in different subgraphs run on different GPUs. Fig. 3 shows
that the computation graph is partitioned into two computation
subgraphs, which are assigned to different GPUs.

Parallelization Strategy. Hierarchical inter-operator paral-
lelism is applied, including two levels: 1) parallel execution
of independent operators in different computation subgraphs
on their respective GPUs, and 2) concurrent execution of in-
dependent operators in the same computation subgraph on the
assigned GPU. Specifically, to concurrently execute multiple
operators within the same GPU, these operators need to be put
into different CUDA streams. Operators (i.e., CUDA kernels)
in the same CUDA stream are executed sequentially; operators
in different CUDA streams will be executed concurrently or
in parallel if there are enough SM resources. The maximum
number of CUDA streams can be preset to be L.



Stage. To both take advantage of intra-GPU inter-operator
parallelism and prevent excessive resource contention among
concurrent operators within each GPU, each computation
subgraph is partitioned into multiple stages, each of which
consists of a set of independent operators. Stages are executed
sequentially and operators in the same stage are executed
concurrently. After the input data of all the operators in a
stage S are ready, the total time of concurrent execution of
these operators with the same start time is denoted by t(S).
In fact, if a part of these operators has ready input data,
they may execute earlier in a practical system. However, we
assume that they start simultaneously because this assumption
does not only make the concurrent execution time of a set of
independent operators easy to measure, but can also guarantee
a tight upper bound of inference latency. Stages of different
computation subgraphs are not synchronized. Fig. 3 shows a
possible schedule: each of the two computation subgraphs is
partitioned into two stages. In the first computation subgraph,
the first stage contains operator a, and the second stage con-
tains operators d and e; in the second computation subgraph,
the first stage contains operators b and c, and the second stage
contains operator f.

Operator Synchronization. Since there exists data depen-
dency between operators allocated onto different GPUs, an
operator can only start to run when all its input data are
ready on its GPU. As a result, when an operator in the
current stage waits for the input data to be transferred from
another GPU, its current GPU might become idle. For this
precedence constraint, if there exists a directed edge (i.e.,
execution dependency) from an operator in the jth stage Si,j

to an operator in the j′th stage Si,j′ on the ith GPU, the
finish time tF (Si,j) of stage Si,j must not be later than the
start time tS(Si,j′) of stage Si,j′ . Furthermore, if there exists a
directed edge e from an operator in stage Si,j on the ith GPU
to an operator in stage Si′,j′ on the i′th GPU, the finish time
tF (Si,j) of stage Si,j plus the data transfer time t(e) must not
be later than the start time tS(Si′,j′) of stage Si′,j′ .

Schedule. We define a computation graph G’s schedule Q
that maps all the operators onto no more than M GPUs as
Q = {Qi|1 ≤ i ≤ M}, where Qi = {Si,j |1 ≤ j ≤ Ki}. Here,
Si,j is the set of concurrent operators in the jth stage on the ith
GPU, and the total number Ki of stages on the ith GPU is 0
if no operator runs on the GPU. For example, the schedule
for Fig. 3 is Q = {Q1, Q2}, where Q1 = {{a, d}, {e}}
and Q2 = {{b, c}, {f}}. The schedule Qi executes the
computation subgraph from the first stage Si,1 to the last stage
Si,Ki

sequentially. Si,j may contain only one operator (e.g.,
a very large operator that saturates the entire GPU).

B. Problem Definition

Given the computation graph of an arbitrary DAG-
structured neural network G = (V,E), M homogeneous GPUs
in a symmetric multiprocessing (SMP) system, the execution
time t(S) of each set S of no more than K independent
operators concurrently running on a single GPU, and the

communication time t(u, v) of data transfer between operators
u and v running on different GPUs.

Question is to find a feasible schedule Q to minimize the
inference latency for the given computation graph G running
on at most M GPUs.

Subject to the precedence constraint

tS(Si′,j′)− tF (Si,j) ≥
{
t(u, v), if i ̸= i′

0, if i = i′
,

∀(u, v) ∈ E, u ∈ Si,j , v ∈ Si′,j′

Our problem is NP-hard, because it is provable to find an
optimal schedule for a set of jobs is NP-complete [15], and
this job scheduling problem can be reduced to our problem in
polynomial time.

IV. ALGORITHM DESIGN

This section first elaborates the design of our HIOS-LP algo-
rithm, including inter-operator parallelization among multiple
GPUs in §IV-A and within each GPU in §IV-B. Then, we
analyze the time complexity of HIOS-LP in §IV-C.

A. Inter-GPU Inter-Operator Parallelization

In inter-operator scheduling over multiple GPUs, two ques-
tions need to be answered for each operator, i.e., on which
GPU and at what time to execute each operator. On one hand,
if we determine each operator’s GPU and start time one by
one, it is difficult to consider the relationship between op-
erators for global optimization, such as reducing unnecessary
data transfer between different GPUs and hiding the data com-
munication time by leveraging operators’ computation time.
On the other hand, if we consider the spatial and temporal
scheduling of all operators at one time, the problem is too
complicated to deal with. To make a tradeoff between optimity
and feasibility, we partition all the operators into multiple
groups and incrementally choose a group for scheduling. In
each group, operators are closely related to each other and
critical to the end-to-end inference latency.

Based on this idea, the algorithm for inter-GPU operator
parallelization is described in Lines 1–16 of Alg. 1. Initially,
the unscheduled computation subgraph G′ is the whole com-
putation graph G, and the computation subgraph Gi allocated
onto the ith GPU, which has no operators (in Lines 1–3).

Spatial Operator Mapping onto GPUs (in Lines 5–
16): The schedule of the longest path (LP) in the original
computation graph G is viewed as the performance bottleneck
for end-to-end latency optimization. Subsequently, the longest
path in the unscheduled computation subgraph G′ also plays
the most important role in the inference latency. Therefore, we
iteratively choose the longest path from G′ to form a group
of operators for their GPU allocation as a whole every time.
When all the operators on the longest path P are allocated onto
the same GPU, the data transfer time along P disappears.

It is worth noting that because the longest path is identified
prior to the GPU allocation of its operators, we pay attention
to the upper bound of path latency (where any two adjacent
operators along any path are supposed to be on different GPUs
at worst), and thus count both vertex and edge weights (i.e.,
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Fig. 4: An example to illustrate how Alg. 1 works.

Algorithm 1 Longest-Path-Based Operator Scheduling
Inputs: computation graph G, number M of GPUs, execution
time t(S) of each set S of independent operators on one GPU,
and data transfer time t(u, v) between each pair of operators
u and v on different GPUs.
Output: schedule Q with minimal inference latency L.

1: G′ = G;
2: for i ∈ {1, · · · ,M} do
3: Gi = ∅;
4: while G′ ̸= ∅ do
5: From G′, find the longest path P whose intermediate vertices

(excluding the first and last vertices in P ∩ G′) have no edges
from/to any vertex in the scheduled computation subgraph G-G′;

6: G′ = G′ − P ;
7: L = +∞;
8: for i ∈ {1, 2 · · · ,M} do
9: G′

i = Gi ∪ P ;
10: Sort all vertices in G-G′ according to the descending

order of their priority indicators, as v1, v2, . . . , vn;
11: for j ∈ {1, 2, . . . , n} do
12: Schedule vj at the earliest available start time on its

GPU;
13: Obtain the corresponding schedule Q′ and its latency L′;
14: if L′ < L then
15: L = L′; I = i; Q = Q′;
16: GI = GI ∪ P ;
17: (Q, L) = parallelize(G, Q); // See Alg. 2.
18: return (Q, L).

operator computation time and data transfer time between
GPUs) towards the path length in finding the longest path.

While exploring path candidates for the longest path in
G′, it is necessary to enforce a constraint that all the in-
termediate vertices (except the first and last vertices) on a
path candidate have no data dependency with any mapped
operator (in Line 5). The reason is as follows. Without loss
of generality, we assume that an intermediate vertex v on a
path candidate P has an incoming edge from a vertex u in the
scheduled computation subgraph, so operator v cannot start
before receiving input data from operator u. In this case, even

if v and its preceding operator on P are on different GPUs, the
data transfer time between them might be hidden by awaiting
data from operator u. Due to this potential time constraint
relaxing, the previous vertices before v on P might have a
better mapping option for latency reduction.

After we find the longest path P under the aforementioned
constraint from the unscheduled computation subgraph (called
the longest valid path), all the vertices and edges on P
is removed from the unscheduled computation subgraph G′

(in Line 6). (Note that an edge is removed from G′ only if its
two vertices are both removed.) Then, we try to temporarily
map all the operators of the path P onto one GPU at one time
and exhausted all the GPUs (in Lines 8 and 9). In each try,
we intend to schedule operators on P and all the previously
mapped operators in their respective GPUs according to the
temporal operator scheduling method (described in the next
paragraph). Next, we search for the best GPU to map the path
P onto so that the scheduled computation subgraph G-G′ has
the minimum end-to-end latency (in Lines 14 and 15), and
eventually allocate all the operators of P onto the best GPU
(in Line 16).

Temporal Operator Scheduling for Data Dependency
(in Lines 10–13): We first define the priority indicator p(v) of
operator v as the length (including the sum of all the vertex and
edge weights) of the longest path from v to the last operator in
the original computation graph G (equivalent to the opposite
number of v’s latest start time in G). Let gj denote the GPU
that operator vj is mapped to. Then, we sort all the vertices
in the mapped computation subgraph G-G′ according to the
descending order of their priority indicators and label them as
v1, v2, . . . , vn (in Line 10). This order is a topological sort.
Next, following this order, we schedule each operator vj one
by one at their earliest available start time on its GPU gj
(in Lines 11–12). As a result, we can obtain the corresponding
schedule and measure its inference latency (in Line 13).

Example: Fig. 4 demonstrates how HIOS-LP identifies the
optimal schedule of inter-GPU operator parallelization for a



given computation graph of eight operators on two GPUs. The
execution times of each operator and the transfer time of each
data dependency are listed on the left of Fig. 4. Based on the
original computation graph, the priority indicators of all the
operators are calculated and listed in the table in Fig. 4. First,
we find the longest path P1 = {v1, e1, v2, e3, v4, e5, v6, e8, v8}
in red, and initially map all its operators {v1, v2, v4, v6, v8}
onto GPU 1 due to the homogeneity of GPUs. Then, we
find the second longest valid path P2 = {e2, v3, e4, v5, e6}
in purple from the unmapped subgraph. Note that the start
and end edges {e2, e6} are included in P2. Here, we do not
select the longer path of {e2, v3, e4, v5, e7, v7, e9}, because its
intermediate operator v5 has an outgoing edge to operator v6
that has been mapped to GPU 1 and thus this path is not a
valid candidate. Next, we try to separately map P2 onto GPU 1
and 2, and obtain two schedules with the minimum latency of
18 and 16, respectively. Therefore, we decide to map P2 onto
GPU 2. In the following, we find the next longest valid path
P3 = {e7, v7, e9} in blue from the unmapped subgraph, and
try to map it onto each GPU. Through the temporal operator
scheduling method, we obtain a schedule with a latency of 18
if P3 is on GPU 1 and another schedule with a latency of 16
if P3 is on GPU 2. Eventually, P3 is mapped onto GPU 2, and
the inter-GPU operator scheduling algorithm finds the optimal
schedule with the inference latency of 16.

B. Intra-GPU Inter-Operator Parallelization

Given a computation graph G and its schedule Q with inter-
operator parallelism on multiple GPUs and sequential operator
execution on each GPU, we further explore opportunities
for inter-operator parallelization on each GPU for inference
latency reduction. However, the algorithm for an inter-operator
scheduler (IOS) in [4] cannot be applied here for the following
reasons. First, IOS is an exact algorithm with exponential
time complexity, and thus it is unaffordable to apply the IOS
algorithm to operator scheduling on each GPU due to its
unscalability for large-scale DL models. Second, IOS only
schedules operators on a single GPU, so do not consider the
significant effect of data dependency/synchronization between
operators across GPUs, leading to the suboptimality of oper-
ator scheduling within each GPU.

To meet the requirements on the low time complexity
of intra-GPU operator scheduling and its compatibility with
data dependency across GPUs, we propose an efficient intra-
GPU inter-operator parallelization method, described in Alg. 2.
First, we sort all the vertices in the given computation graph G
according to the descending order of their priority indicators
and label them as v1, v2, . . . , vn (in Line 2). Along this
order, we iteratively slide an operator window W to make
its beginning align with each operator in turn, where the
window masks no more than w continuous operators on one
GPU (in Lines 3–6). For a window of size p (2 ≤ p ≤ w)
starting at an operator, if all the operators masked by the
window are independent of each other, we will try to group
them for parallel execution in the same stage (in Lines 7–9),
and check whether a cycle is involved after these operators

Algorithm 2 Intra-GPU Inter-Operator Parallelization
Function Name: parallelize()
Inputs: computation graph G, its schedule Q with inter-
operator parallelism among GPUs and sequential operater
execution on each GPU, and maximum window size w.
Output: schedule Q of minimal inference latency L with
inter-operator parallelism among GPUs and within each GPU.

1: Let L be the inference latency of Q;
2: Sort all vertices in G according to the descending order of their

priority indicators, as v1, v2, . . . , vn;
3: for i from 1 to n-1 do
4: Let gi denote the GPU that operator vi is mapped to;
5: for p ∈ {1, · · · , w − 1} do
6: W = {vi and its p succeeding operators on gi according

to schedule Q};
7: if operators in W are independent with each other then
8: G′ = G;
9: Group all operators v ∈ W for parallel execution in

the same stage and merge them as a single node in G′;
10: if there exists no cycle in G′ then
11: G = G′;
12: Reschedule all the operators/grouped operators in

G at their earliest available start time without changing their
execution order on each GPU, as schedule Q′;

13: Let L′ be the inference latency of Q′;
14: if L′ < L then
15: L = L′; Q = Q′;
16: return (Q,L).
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Fig. 5: An example to illustrate how Alg. 2 works.

are grouped into a single vertex in the computation graph.
If not, we temporarily reschedule all the operators/grouped
operators at their earliest available start time without changing



their execution order on each GPU, generating a schedule
candidate Q′ (in Lines 10–12). For each operator, we try
different window sizes from 2 to w (in Line 5) and update the
schedule Q if the schedule candidate with the lowest inference
latency performs better (in Lines 13–15).

Example: Fig. 5 demonstrates how HIOS-LP explores the
opportunities of intra-GPU inter-operator parallelization for a
given computation graph along with its inter-GPU operator
schedule. The execution time of each operator and the transfer
time of each data dependency are listed on the top left
of Fig. 5. Since the maximum window size is preset to be
2, the execution time of each pair of independent operators
running in parallel on a GPU is listed on the top right of Fig. 5.
In the given computation graph, all the operators have been
labeled according to the descending order of their priority
indicators. We traverse operators from v1 to v7 as follows:
1) v1 must finish before v2 on GPU 1, so is skipped. 2) v2 is
followed by v3 closely on GPU 1 and they can be parallelized
for latency reduction, so they are grouped. 3) v3 must finish
before v6 on GPU 2, so is skipped. 4) v4 has been grouped
with v2 for parallel execution on GPU 1, so is skipped. 5) v5 is
followed by v7 closely on GPU 1 and they can be parallelized
for latency reduction, so they are grouped. 6) v6 is followed
by nothing on GPU 2, so is skipped. 7) v7 has been grouped
with v5 for parallel execution on GPU 1, so is skipped. Finally,
the inference latency is improved from 18 to 16 due to inter-
operator parallelism exploration on each GPU.

C. Time Complexity

The time complexity of inter-GPU inter-operator paralleliza-
tion is O(M ·|V |3·|E|), because finding the longest path under
our constraint has the time complexity of O(|V |2·|E|) and
is invoked O(|V |) times as well as the temporal operator
scheduling method has the time complexity of O(|E|) and is
invoked O(M · |V |) times. Here, M is the number of GPUs.
The time complexity of intra-GPU inter-operator paralleliza-
tion is O(w2 · |V |·|E|3). Therefore, HIOS-LP has the time
complexity of O(|V |·|E|(M · |V |2+w2 · |E|2)), where w is
the preset maximum window size.

V. SIMULATION

In this section, we conducted extensive simulations to evalu-
ate the inference latency of different inter-operator scheduling
algorithms in various scenarios.

A. Simulation Settings

We generate a series of random DL model structures, in
each of which the number of operators and the number of
layers are preset to 200 and 14, respectively. The number of
inter-operator dependencies is preset to 2 times the number
of operators. The number of homogeneous GPUs is preset to
4. The execution time of an operator is randomly selected
between 0.1 and 4 milliseconds; the transfer time between
GPUs for the output data of an operator is a maximum of
0.1 milliseconds and p of the execution time of this operator,
where p is preset to 80%. By default, each data point denotes

Algorithm 3 Mapping-Recording-Based Operator Scheduling
Inputs: computation graph G, number M of GPUs, execution
time t(S) of each set S of independent operators on one GPU,
and data transfer time t(u, v) between each pair of operators
u and v on different GPUs.
Output: schedule Q with minimal inference latency L.

1: Sort all operators v ∈ G according to their priority indicators in
descending order as v1, v2, . . . , vn;

2: for i from 1 to n do
3: for j ∈ {1, · · · ,M} do
4: ti,j = +∞; gi,j = 0; // Initialize a n×M 2D table.
5: t1,1 = t(v1);
6: for i from 2 to n do
7: for j ∈ {1, · · · ,min(M, i)} do
8: for k ∈ {1, · · · ,min(M, i− 1)} do
9: /* Obtain previous operators’ schedule, i.e., the GPU

index g(v) and finish time tF (v) for each v ∈ {vi−1, . . . , 1} in
turn from the 2D table. */

10: m = k;
11: for l from i− 1 to 1 do
12: tF (vl) = tl,m; g(vl) = m; m = gl,m;
13: /* Compute the earliest finish time of vi on the jth

GPU if vi−1 is mapped onto the kth GPU. */
14: tk = max{tF (vl)|g(vl) = j, 1 ≤ l ≤ i− 1};
15: for u ∈ {preceding vertices of vi in G} do
16: if u is on the jth GPU then
17: tk = max{tF (u), tk};
18: else
19: tk = max{tF (u) + t(u, vi), tk};
20: if ti,j > tk + t(vi) then
21: ti,j = tk + t(vi); gi,j = k;
22: m = J = argminj tn,j ;
23: Qj = ∅ for ∀1 ≤ j ≤ M ;
24: for i from n to 1 do
25: Qm = {{vi}, Qm}; m = gi,m;
26: Q = {Qj |1 ≤ j ≤ M};
27: (Q, L) = parallelize(G, Q); // See Alg. 2.
28: return (Q, L).

GPU 1 GPU 2

Time GPU Time GPU

v1 2 0 +∞ 0

v2 5 1 6 1

v3 5 2 6 1

v4 8 1 9 1

v5 12 1 10 1

v6 12 2 11 1

v7 16 1 14 1

v8 18 1 17 2

v1(2)
GPU1 GPU2

Latency: 17

e2(1)

e8(3)

v6(4)

v3(3)

v4(3)
v2(3)

v5(4)

v8(2)

v7(4)

Operator v1 v2 v3 v4 v5 v6 v7 v8
Priority 17 14 14 14 9 9 9 2

v3=3

e2 =1
v1=2

v6=4

v8=2

v2=3

v5=4

v4=3

v7=4

e1=1 e3=1

e4 =2

e7=3

e5 =2

e8 =3

e6 =2

e9=3

Fig. 6: An example to illustrate how Alg. 3 works.

the average of 30 randomly generated instances with standard
deviations.

B. Algorithms for Comparison

We compared the performance of different scheduling algo-
rithms:
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• Sequential scheduling: Sequential scheduling executes
the operator one by one according to a certain topological
order in a single GPU.

• IOS [4]: IOS schedules operators only in a single GPU,
and is an exponential-time algorithm based on dynamic
programming, which is combined with schedule pruning
for exploration space reduction.

• HIOS based on the longest path (HIOS-LP): Our
HIOS-LP schedules operators on multiple GPUs and is
a polynomial-time algorithm based on iterative longest-
path mapping, including LP-based inter-GPU operator
scheduling (inter-GPU w/ LP) and intra-GPU inter-
operator parallelization.

• HIOS based on mapping recording (HIOS-MR): Our
HIOS-MR also schedules operators on multiple GPUs
and is a polynomial-time algorithm based on recording
important attempts of mapping previous operators, de-
scribed as follows and shown in Alg. 3.

HIOS-MR includes two parts: MR-based inter-GPU oper-
ator scheduling (inter-GPU w/ MR) illustrated in Fig. 6 and
intra-GPU inter-operator parallelization (the same as Alg. 2).
For the former, we first generate a n × M two-dimensional
table, where the ith row corresponds to operator vi, and the
jth column corresponds to the jth GPU. In this table, each
pair (ti,j , gi,j) is used to record the earliest finish time of
vi that is mapped onto the jth GPU, and correspondingly
the index of the GPU that vi−1 is mapped onto when vi on
the jth GPU finishes by ti,j (in Lines 2–4). Then, we map
operators one by one according to their topological sorting
(i.e. descending priority indicators). Initially, v1 is mapped
onto GPU 1 (in Line 5). For each subsequent operator vi, we
try to map it onto the first to the min(M, i)th GPU (in Lines 6
and 7). When we suppose that vi is mapped to GPU j, we
search its earliest finish time by exploring min(M, i − 1)
recorded schedules of v1, v2, . . . , vi−1, in each of which vi−1

is mapped to a different GPU j and has the earliest finish time
ti−1,j based on the previous search (in Lines 8–21). Finally,
based on this complete table, we identify the earliest finish
time tn,J of vn over all the GPUs, and iteratively go along the
direction pointed at by gi,m from gn,J to obtain the optimized
schedule of v1, v2, . . . , vn (in Lines 22–26).

C. Number of GPUs

We first compare HIOS-LP in terms of inference latency
with sequential scheduling, IOS, HIOS-MR, LP-based inter-
GPU operator scheduling, and MR-based inter-GPU operator
scheduling over different numbers of GPUs and observe the
scalability of HIOS-LP with the ascending number of GPUs.
We plot the average and standard deviation of inference latency
of these randomly generated DL models in Fig. 7. From the
figure, it is witnessed that with the number of GPUs increasing
from 2 to 12, the speedup of HIOS-MR is no more than 1.5
over sequential scheduling and no more than 1.4 over IOS,
but the speedup of HIOS-LP is 1.4 to 3.8 over sequential
scheduling and 1.3 to 3.5 over IOS. Therefore, HIOS-LP
overperforms HIOS-MR in terms of inference latency and the
scalability of HIOS-LP with the number of GPUs is also better
than HIOS-MR.

D. Number of Operators

Then, we evaluate the performance of these six scheduling
algorithms in terms of inference latency for DL models with
the number of operators from 100 to 400 at an interval of
50. We plot the inference latency in Fig. 8, where we observe
that the speedup of HIOS-LP is 2.01 to 2.12 over sequential
scheduling, 1.81 to 1.91 over IOS, 1.51 to 1.54 over HIOS-
MR, and 1.05 to 1.08 over LP-based inter-GPU operator
scheduling. This exhibits a satisfactory scalability property
of HIOS-LP with respect to the DL model size. In addition,
intra-GPU inter-operator parallelization reduces the inference
latency of LP-based inter-GPU operator scheduling by 5.7%
to 7.7% and that of MR-based inter-GPU operator scheduling
by 13.3% to 14.6%. This means that LP-based inter-GPU
operator scheduling maps more independent operators onto
different GPUs, leading to a smaller degree of parallelism
within each GPU that can be explored by intra-GPU inter-
operator parallelization.

E. Number of Inter-Operator Dependencies

We also examine the inference latency achieved by these
six scheduling algorithms for DL models consisting of 200
operators with the number of inter-operator dependencies from
400 to 600 at an interval of 50 and plot the measurements
in Fig. 9. These measurements show that with the number of
inter-operator dependencies growing, the speedup of HIOS-
LP decreases from 2.06 to 1.64 over sequential scheduling



and from 1.86 to 1.48 over IOS, while the speedup of HIOS-
MR also declines from 1.35 to 1.19 over sequential scheduling
and from 1.22 to 1.08 over IOS. The performance optimization
of HIOS-LP (and HIOS-MR) is limited by less independent
operators, which is caused by the increasing number of inter-
operator dependencies.

F. Degree of Parallelism in Deep Learning Models

We run these six scheduling algorithms for DL models
with different degrees of parallelism by increasing the number
of operator layers from 6 to 22 at an interval of 4. The
inference latency optimized by these six scheduling algorithms
is plotted in Fig. 10, which shows that the inference latency
by sequential scheduling, IOS, and HIOS-MR is around 411
ms, 371 ms, and 305 ms, respectively, and remains unchanged
over the different average number of operators per layer. It
is worth noting that the inference latency by HIOS-LP is
reduced from 233 ms to 174 ms with the number of operator
layers decreasing from 22 to 6 (i.e., the increasing degree
of parallelism in a DL model). Therefore, HIOS-LP is self-
adaptive to the degree of parallelism in DL models.

G. Communication Overheads among GPUs

We execute these six scheduling algorithms for different
platforms where the time ratio p of data transfer to operator
computation varies from 0.4 to 1.2 at an interval of 0.2. The
inference latency achieved by these six scheduling algorithms
is plotted in Fig. 11. From this figure, we see that with
communication overheads increasing, the inference latency by
HIOS-LP declines from 2.23 to 1.78 of that by sequential
scheduling and from 2.01 to 1.60 of that by IOS, and the
inference latency by HIOS-MR also decreases from 1.52
to 1.10 of that by sequential scheduling and from 1.37 to
0.99 of that by IOS. Therefore, HIOS-LP is suitable for
platforms with multiple GPUs connected via the high-speed
NVLink/NVSwitch, where p is typically less than one.

VI. EXPERIMENTS

In this section, we implemented a hierarchical inter-operator
scheduler (HIOS) and incorporated inter-operator scheduling
algorithms mentioned in §V-B into our HIOS to evaluate their
performance in the real system.

A. Experimental Setup

We implemented the proposed hierarchical inter-operator
scheduler (HIOS) on multiple GPUs by extending the cuDNN-
based C++ Engine in IOS and incorporating CUDA-aware
MPI for inter-GPU data communication. Also, we imple-
mented the proposed inter-operator scheduling algorithm in
Python and generate schedules in JSON for executing infer-
ence on multiple GPUs.

Then, we conducted experiments on the following multi-
GPU platform. The Dell PowerEdge R750XA Rack Server
has two 26-core/52-thread 2.2GHz Intel Xeon Gold 5320 CPU
processors, 192GB RDIMM main memory, and two Nvidia
Ampere A40 GPUs, connected via one Nvidia NVLink bridge

with a bidirectional bandwidth of 112.5 GB/s. Each GPU has
10,752 CUDA cores, 48GB GDDR6 GPU memory, a memory
bandwidth of 696 GB/s, and compute capability of 8.6.

We ran each application with exclusive access to the com-
puting resource. Throughout the experiments, cuDNN 8.8.1,
CUDA 12.1, NVIDIA driver 530.30.02, and Open MPI 4.1.4
were used. By default, each data point in experiments denotes
the average of measurements on 36 runs as [4].

B. Benchmarks

We used two real-life CNN models from [4] as benchmarks
in our experiments. The batch size of CNN inference is set to
one for the fastest response.

• Inception-v3 [16] is the third edition of Google’s Incep-
tion CNN, which has 48 layers, and starts as a module
for GoogLeNet. It is used for assisting in image analysis
and object detection. The default input size is 299× 299
pixels at least. Here, Inception-v3 has 119 operators and
153 inter-operator dependenices.

• NASNet [17] is a type of CNN discovered through neural
architecture search and a family of models that were de-
signed automatically by learning the model architectures
directly on the dataset of interest. The building blocks
consist of normal and reduction cells. The default input
size is 331× 331 pixels at least. Here, NASNet has 374
operators and 576 inter-operator dependencies.

C. Evaluation Metrics

We used two metrics to evaluate inter-operator scheduling
algorithms.

• Inference latency (in milliseconds): Inference latency is
an actual measurement in machine learning to determine
the system performance in the prediction of various
models for a specific application. The actual inference
latency refers to the time taken to predict one data sample
provided only one data sample is processed at a time (i.e.,
with batch size one).

• Time cost of scheduling optimization (in minutes):
The time cost of scheduling optimization denotes the
execution time of a scheduler that takes inputs to produce
an optimized schedule. It is affected by a scheduling
algorithm’s time complexity and scalability.

D. Inference Latency of Different Benchmarks

We measure the actual inference latency of two CNN mod-
els with varying input image sizes and plot the measurements
based on sequential scheduling, IOS, HIOS-LP, and HIOS-MR
in Fig. 12. In order to explore the effect of operator workloads
on the performance of operator scheduling algorithms, we
test CNN inference over different input image sizes from the
default size to the largest size of 2K×2K pixels. From Fig. 12,
we see that HIOS-LP reduces the inference latency by 6.1%
to 19.7% for Inception-v3 and by up to 14.5% for NASNet
in comparison with sequential scheduling, and decreases the
inference latency by 3.3% to 16.5% for Inception-v3 and
by up to 11.1% for NASNet in comparison with IOS. This
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512 1024 1536 2048 2560 3072 3584 4096

No. of Pixels in Height and Width

0

15

30

45

60

75

90

105

120

135

150

In
fe

re
n
c
e
 L

a
te

n
c
y
 (

m
s
)

299

Sequential

IOS

HIOS-LP

HIOS-MR

(a) Inception V3

331 512 768 1024 1280 1536 1792 2048

No. of Pixels in Height and Width

0

30

60

90

120

150

180

210

240

In
fe

re
n

c
e

 L
a

te
n

c
y
 (

m
s
)

Sequential

IOS

HIOS-LP

HIOS-MR

(b) NASNet
Fig. 12: Inference latency of different benchmarks
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Fig. 13: Performance gain analysis

effectively validates that multiple GPUs can accelerate DL
inference. Also, it can be observed that the inference latency
achieved by HIOS-LP is 10.9% to 16.8% and 8.8% to 16.2%
less than that achieved by HIOS-MR for Inception-v3 and
NASNet, respectively. The reason for the superiority of HIOS-
LP over HIOS-MR is as follows. HIOS-LP iteratively places
the operators of the longest path onto the same GPU to reduce
communication time for global inference latency optimization.
However, HIOS-MR only places operators greedily through
local optimization, involving unnecessary communication.

E. Performance Gain Analysis for the HIOS-LP Algorithm

In order to further dissect the inference performance gain of
hierarchical inter-operator scheduling, we display the inference
latency achieved by sequential scheduling, IOS, HIOS-LP,
HIOS-MR, LP-based inter-GPU operator scheduling, and MR-
based inter-GPU operator scheduling for two CNN bench-
marks with their default (or small) input image sizes and
respective largest input image sizes in Fig. 13. This figure
shows that in comparison with sequential scheduling, inference
latency reduction by HIOS-LP is 9.9 and 4.5 times latency
reduction by IOS for Inception v3 with large and small input
image sizes, respectively, and is also 3.8 times that by IOS
for NASNet with the large input image size. Because IOS is
an exact algorithm for the optimal schedule in a single GPU,
its inferiority means that intra-GPU operator parallelization is
seriously insufficient for inference latency reduction due to
limited resources in a single GPU. As shown in Fig. 13b,
inference latency by HIOS-LP is 5.4% longer than that by
IOS for NASNet with the small input image size. Here,
performance degradation might be caused by CUDA kernel
launching overheads. When directly dependent operators are

in different GPUs, the succeeding CUDA kernel needs to be
launched after inter-GPU data transfer completion in HIOS’s
current implementation version based on CUDA-aware MPI.
For implementation improvement, inter-GPU data transfer
based on Nvidia Collective Communication Library (NCCL)
might be able to hide the launching time of succeeding CUDA
kernels. In addition, we observe from Fig. 13 that latency
reduction by LP-based inter-GPU operator scheduling counts
towards 98.2% and 81.6% of total latency reduction by HIOS-
LP for Inception v3 with large and small input image sizes,
respectively. This indicates that although intra-GPU operator
parallelization can group small operators for parallel execution
and inference acceleration, inter-GPU operator parallelization
dominates the performance gain of HIOS-LP, especially for
large input image sizes. In contrast, latency reduction by LP-
based inter-GPU operator scheduling counts towards almost
100% of total latency reduction by HIOS-LP for NASNet
with both large and small input image sizes. This is because
a limited number of independent operators in NASNet are
distributed to different GPUs, which makes operators in each
GPU almost non-parallelizable.

F. Time Cost of Scheduling Optimization

To compare the time cost of scheduling optimization by
HIOS-LP with IOS and HIOS-MR, we measure the execution
time of these three inter-operator schedulers for two CNN
benchmarks with different input image sizes, shown in Fig. 14.
Here, the scheduling time includes the time used to measure
the execution time of each single operator and each group of
parallel operators, the communication time of each possible
data transfer between GPUs, the inference latency of involved
sub-models, and the running time of a scheduling algorithm.
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Fig. 14: Time cost of scheduling algorithms

Fig. 14 reveals that the scheduling times of HIOS-LP and
HIOS-MR increase with input image sizes much slower than
that of IOS. Specifically, Fig. 14a shows that HIOS-LP’s
scheduling time is less than 20 minutes for Inception-v3;
Fig. 14b also displays that HIOS-LP’s scheduling time is up
to 55.8% less than IOS’s for NASNet with large input image
sizes. Overall, HIOS-LP and HIOS-MR in terms of scheduling
time cost are comparable with IOS and perform well for large
input image sizes.

VII. RELATED WORK

We did the survey on the related work in four aspects.
Multiple Concurrent Inferences: A few DL systems can

schedule operators from different inferences for parallel execu-
tion on a single GPU. For example, Yu et al. [13] improve the
runtime efficiency of a DL application composed of multiple
DNN model inferences on a single GPU by wisely adjusting
model concurrency and interleaving DNN model operators to
maintain a continuously balanced resource utilization across
the entire inference process. REEF [18] is a DNN infer-
ence serving system using preemptive scheduling for multiple
workloads on a single GPU, which enables microsecond-
scale kernel preemption to provide real-time guarantees and
dynamically pads real-time kernels with best-effort kernels for
concurrent execution to fully utilize resources. In comparison
with exploiting dependence among operators from different
inferences to optimize GPU utilization, it is more significant
and challenging in practice that our HIOS improves the latency
of a single inference by exploring dependence among its own
operators.

Single Inference: Existing research work has explored
inter-operator scheduling to speed up the latency of a single
DL inference within a single GPU. Rammer [19] optimizes
DNN inference latency on a single GPU by holistically
exploiting inter- and intra-operator parallelism for a richer
co-scheduling space to maximize hardware utilization. In
addition, Nimble et al. [3] is a DL execution engine, which
supports parallel execution of operators in a single GPU using
multiple CUDA streams and thus reduces inference latency by
efficiently utilizing the GPU computation power. To improve

the scheduling algorithm in Nimble that does not consider the
latency of each operator, Inter-Operator Scheduler (IOS) [4]
is proposed as a profile-based scheduler to accelerate CNN
inference by automatically scheduling multiple operators’ par-
allel execution through a dynamic programming algorithm.
However, these inter-operator scheduling algorithms do not
work for the scenario of DL inference acceleration over
multiple GPUs, which is targeted by our HIOS.

CPU-GPU Co-Execution: Recent efforts have coordinated
heterogeneous processors to improve the latency of a sin-
gle DL inference. For instance, LaLaRAND [5] is a real-
time layer-level DNN scheduling framework in embedded
systems, which schedules individual DNN layers onto a
CPU/GPU by coupling CPU-friendly quantization with fine-
grained CPU/GPU allocation schemes while mitigating accu-
racy loss without compromising timing guarantees. CoDL [6]
is a concurrent DL inference framework to optimize the
latency of DNN inference across the CPU and GPU on
mobile devices, which allows heterogeneous processors to
use their respective efficient data type and conducts operator
partitioning by building a concurrency-aware latency predictor
to extract the non-linearity of operator latency response. These
frameworks make use of CPU and GPU’s respective advan-
tages to minimize DL inference latency, while our HIOS is
oriented towards multiple homologous GPUs.

DAG Scheduling: Many studies [20]–[28] focus on DAG
scheduling. Ueter et al. [29] study the hierarchical real-time
scheduling problem of sporadic arbitrary-deadline DAG tasks.
Zhao et al. [30] propose a multi-DAG scheduling approach to
reduce inter-DAG interference.

VIII. CONCLUSION

The limited resources on a single GPU are insufficient to
speed up the inference of multi-branch neural networks to
meet low latency demands from real-time applications. For
better inference latency acceleration, our HIOS system exploits
inter-GPU operator parallelization to avoid resource contention
between large operators during concurrent execution and
leverages intra-GPU operator parallelization to group small
operators for high resource utilization. To further solve the
extremely complicated operator scheduling problem for hybrid
inter-GPU and intra-GPU parallelism, we proposed a novel
operator scheduling algorithm, HIOS-LP, which iteratively
maps the longest path in the remaining computation graph
onto one selected GPU for inter-GPU operator parallelization
and then groups independent operators in a sliding window
for intra-GPU operator parallelization. Experiments with two
real-life CNN benchmarks and extensive simulation in various
scenarios validate the superiority of our HIOS-LP over the
state-of-the-art IOS and HIOS-MR methods.
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